

Guardrail Traffic Barrier Terminals Energy Attenuator

Tracy Borchardt

April 2013

National Cooperative Highway Research Program (NCHRP) 350

NCHRP Report 350, released in 1993, was formally adopted by FHWA for the NHS.

This was the first time that FHWA adopted these Procedures.

Test Level For Roadside Barriers

NCHRP 350 Test Level For Barriers	Largest Vehicle Mass	Large Vehicle Impact Speed	Impact Angle for Barriers
TL-1	4400 lb.	31 mph	25 deg.
TL-2	4400 lb.	43 mph	25 deg.
TL-3	4400 lb.	62 mph	25 deg.
TL-4	17,650 lb	50 mph	15 deg.
TL-5 & TL-6	79,400 lb	50 mph	15 deg.

NCHRP 350, TL 3 Small Car

4

NCHRP 350, TL 3 Pickup Truck

Note deflection and rail separation from posts.

Galvanized Steel Plate Beam Guardrail Previous Standard – No Gutter

Guardrail Height

An installation too low may allow a larger vehicle to climb or override the barrier.

Standard C1: Galvanized Steel Plate Beam Guardrail

Midwest Guardrail System with Gutter

Tollway Detail

Connecting to Existing Guardrail

Increasing Guardrail Height

This work shall consist of the <u>complete removal</u> and <u>re-erection</u> of existing steel plate beam guardrail and traffic barrier terminals.

Guardrail – 3 Types

Guardrail System	Post Spacing
MGS- 31" Type A	6'- 3"
MGS- 31" Type B ½-Post Spacing	3'- 1 ½"
MGS- 31" Type C ¼-Post Spacing	1'-6 ¾"

MGS W-Beam Rail (2 types)

Post Spacing Type A (6'-3") and Type B (3'-1¹/₂")

Post Spacing Type C (1'-6³/₄")

Strong Post Systems

Since there is a considerable contribution to the redirection capability of the system from the strength of the strong posts, it is <u>necessary to develop adequate soil</u> <u>support</u> for the post to prevent it from pushing backwards too easily.

Aggregate Shoulder Material

Aggregate Shoulder Material

DO NOT MOUND AGGREGATE – RESTRICTS ROADWAY DRAINAGE

Shall Not Be Bolted Down

Shall Not Be Encased in Concrete

Shall Not Be Encased in Asphalt

Guardrail Post Leave-Outs

Guardrail Post Leave-Outs

Guardrail Post Leave-outs Video

Wood Block-Out

Wood Block-Out

Wood Block Grading Rules

Southern Pine Inspection Bureau

Standard Specifications for Road and Bridge Construction

Adopted January 1, 2012

West Coast Lumber Inspection Bureau

Illinois Department of Transportation

Wood Block Defect-Splits

A split is a separation of the wood through the piece to the opposite surface or to an adjoining surface due to the tearing apart of wood cells.

Splits are limited to 1/6 the block length $(14") = 2\frac{1}{4}"$.

Wood Block Defect- Split

Limited to 1/6 the block length(14") = $2\frac{1}{4}$ " This split runs entire length of wood block-out.

Wood Block Defect-Shakes

Shakes are a lengthwise separation of the wood which occurs between or through the annual rings of growth.

Shakes are limited to 1/3 the thickness (6") on end = 2".

Wood Block Defect-Shakes

Wood Block Defect-Checks

Checks are a separation of the wood normally occurring across or through the rings of annual growth and usually as a result of seasoning.

Checks are limited to the sum of $\frac{1}{2}$ the thickness (6") = 3".

Always measure perpendicular to the face of the block if check is on the 6-inch face, not the actual length of the crack.

Wood Block Defect-Check

Wood Block Defect-Knots

Knots are a portion of branch or limb that has become incorporated in a piece of lumber. Knots shall be measured as shown in Figure.

F- Measure least dimension.

G-Measure along corner or measure size most nearly representing diameter of branch causing the knot.

The sum of the sizes of all knots in any 6" length of piece must not exceed twice the size of the largest knot permitted.

Nominal Width	Approximate Knot Size	
6"	1-7/8"	
12"	3-3/4"	

Wood Block Defect-Knots

Wood Block Defect-Routed Edge

Standard D4: Delineators

D4-Delineators

Revised Permanent	Delineation Spacing
--------------------------	----------------------------

		MAINLINE		RAMP	
		TANGENT	CURVE	TANGENT	CURVE
*	GUARDRAIL	100′	100'	100'	TABLE A
*	CONCRETE BARRIER (DOUBLE FACE)	100′	100′	100′	TABLE A
*	CONCRETE BARRIER (SINGLE FACE)	100′	100′	100′	TABLE A
	SHOULDER NARROWING	3 @ 15′	3 @ 15′	3 @ 15′	3 @ 15′
	BRIDGE APPROACHES	3 @ 15′	3 @ 15'	3 @ 15′	3 @ 15'
*	BRIDGE PARAPET	50′	50′	50′	50′
*	NOISE ABATEMENT WALL (CRASH WORTHY)	100′	100′	100′	TABLE A
	POST MOUNTED DELINEATOR	200′	200′	200′	TABLE A
	POST MOUNTED DELINEATOR (RAMP TAPERS AND TANGENTS)	100′	100′	NA	NA

D4-Delineators

New Temporary Delineation Spacing

	TEMPORARY DELINEATION SPACING					
		TANGENT	REVERSE CURVE	SHIFT	TAPER	
T	EMPORARY CONCRETE BARRIER	50′	25′	25′	25′	

Q: IDOT reflector Type A details the use of butterfly delineators (metal) that slip under the bolt on guardrail.

Why are they not used on the Tollway?

A: This type delineator when connected at posts may imitate the behavior of the old steel washers and allow the rail to remain attached to the post and possibly become pulled down during impact events.

Barrier Clearance Distance

Barrier clearance distance is measured from back of post to face of obstacle.

Midwest Guardrail System Video

Barrier Clearance Distance

Guardrail System	Post Spacing	Desirable Barrier Clearance Distance	Minimum Barrier Clearance Distance
MGS- 31" Type A	6'- 3"	42"	28"
MGS- 31" Type B ½ Post Spacing	3'- 1 ½"	30"	23"
MGS- 31" Type C ¼ Post Spacing	1-'6 ¾"	24"	14"

Minimum Barrier Clearance distances are only to be used for Existing Obstacles

Galvanized Steel Plate Beam Guardrail

46

Galvanized Steel Plate Beam Guardrail

Storage Areas In Work Zones

Materials or equipment when placed behind guardrail, shall be placed a minimum of 4 feet behind the guardrail posts.

Q: Guardrail crosses a drainage structure and post cannot be placed where required. Can additional block-outs be used to offset the post?

A: No; the Tollway does not allow additional block-outs.

Maximum Post Spacing

Q: Guardrail crosses a drainage structure and post cannot be driven. Should post be omitted or

moved?

A: Post should not be omitted. All posts should be used.

MGS (31-inch rail height) single rail section has been successfully tested to span up to 9'- 4½".

Long-Span Test (Too Long)

Galvanized Steel Plate Beam Guardrail Drainage Structure Conflict

Galvanized Steel Plate Beam Guardrail Drainage Structure Conflict

Q: Would drilling a new hole in the Midwest Guardrail System (MGS) guardrail weaken the system?

A: FHWA does not recommend altering a conventional wbeam rail by drilling new holes to accommodate the MGS.

However, **drilling** may be permitted to accommodate the repositioning of posts at drainage structures when prepunched spacing rail cannot be configured.

The use of torching is not allowed.

Temporary Access To Work Area Remove and Reinstall Existing Guardrail

MOT Manual <u>identifies</u> <u>conditions</u> in which this operation is allowed.

NON-PROPRIETARY TERMINALS

Non-Proprietary Traffic Barrier Terminals

- Each run of guardrail needs to be anchored on <u>each end</u> with a terminal.
- Tollway Standards Traffic Barrier Terminals
 - Type T2
 - Type T5
 - Type T10
 - Type T6
 - Type T6B

Standard C7: Traffic Barrier Terminal Type T2

Anchor Plate T with ¾" cable assembly

> Typically utilized on the departing end of a steel plate beam guardrail system.

None of length counts toward length of need

Traffic Barrier Terminal Type T2 with Gutter

Traffic Barrier Terminal Type T2 Without Gutter

Cable is tightened to a *taut condition; cannot lift up on the cable more* than 1 inch.

Bearing Plate K Proper Orientation

- Terminal location is dependent on offset distance to the obstacle.
 - □ Condition 1 (≥28", ≤6')
 □ Condition 2 (>6', <12')
 □ Condition 3 (≥ 12')

Traffic Barrier Terminal Type T2 Condition 1

Traffic Barrier Terminal Type T2 Condition 2

Traffic Barrier Terminal Type T2 Condition 3

Deficiencies?

Steel Foundation Tubes Too High-Potential Snag Point

Bearing Plate K Not Correctly Orientated

No Aggregate Shoulder Material

Standard C8: Traffic Barrier Terminal Type T5

Terminal is typically utilized to connect to the departing end of a <u>NEW</u> bridge.

14.67' counts toward length of need

Plate G was placed over the rail element.

Plate G was placed behind Plate E.
Bolts were epoxied into concrete.
Plate Washer D was not installed.

No Plate Washer D was installed. Standard Washer was used with nut set into Plate G end plate instead of rod.

Standard C11: Traffic Barrier Terminal Type T10

Typically utilized to connect to the departing end of an <u>existing</u> concrete structure.

Standard C9: Traffic Barrier Terminal Type T6

Typically utilized to attach to the upstream end of retaining walls and the bridge concrete parapet where <u>gutter</u> is installed.

Standard C9: Traffic Barrier Terminal Type T6

80

section of thrie beam

Note that this is different than IDOT

PARAPET STEEL BEARING PLATE DETAIL

Alternate Detail Individual Plates

Standard B3: Type G-3 Gutter Transition

Standard B3: Type G-2 Gutter Transition

Gutter Transition at Terminal Type T6

Gutter profile transitions to match barrier wall face profile.

Gutter does not conflict with terminal posts.

Improper Gutter Transitions

Guardrail Block-outs

Use of multiple block-outs is not allowed.

Standard C10: Traffic Terminal Barrier Type T6B

Typically utilized to attach at the upstream end of retaining walls and bridge concrete parapets where <u>gutter does not exist</u>

43.15' counts toward length of need

Type T6 installed instead of Type T6B

Vehicle Impact (Wheel Snag)

PROPRIETARY TERMINALS

Standard C6: Traffic Barrier Terminal Type T1 (Special)

Traffic Barrier Terminal Type T1 (Special) GATING PORTION OF TERMINAL

Runoff Path

Runoff Path

Traffic Barrier Terminal Type T1 (Special)

37.5' counts toward length of need

Tollway

NCHRP 350 Terminal Tests

Traffic Barrier Terminal Type T1(Special)

Traffic Barrier Terminal Type T1(Special)

Traffic Barrier Terminal Type T1(Special)-Anchor

Traffic Barrier Terminal Type T1 (Special) without Gutter

DIRECTION OF		o	àa aa
EDGE OF PAVEMENT	PAY LIMITS OF TRAFFIC BARRIER TERMINAL TYPE TI (SPECIAL)-1 EACH	PAY LIMITS OF OTHER TYPE	
EDGE OF PAVED SHOULDER	NGGREGATE SHOULDERS SPECIAL TYPE C	د SPLICE وَ	
SIC NO	Soli TAPER Soli TAPER Soli TAPER Recovery Au 90'-0" SHOULDER WIDENING TRANSITION-WITHO FOR TRAFFIC BARRIER TERMINAL TYPE	Trea 20' x 90'	
			Illinois

Iollway

Traffic Barrier Terminal Type T1 (Special), w/ Gutter, Type G-3

ET 31

ET 31, Post 1 (Hinged Breakaway™)

ET 31, HBA Post 1

3/4" DIA. X 2 ½" HEX HD BOLT W/WASHER AND LOCK WASHER UNDER HEX NUT 3/8" DIA. X 2" HEX HD BOLT W/WASHER AND LOCK WASHER UNDER HEX NUT

HIGH STRENGTH BOLTS

TOWARDS POST 2

ET 31, HBA Post 1

THE EARS ON THE HBA BOTTOM POSTS SHOULD NOT BE MORE THAN 4" ABOVE THE FINISHED GRADE.

ET 31, Post 2 (Steel Yielding Post)

ET 31, Posts 3-8 (Standard Line Posts)

ET 31, Installation of the Strut

ET 31, Post 1

ET 31, Attaching the Extruder head

ET 31, Attaching the Extruder head

Extruder Head should be Parallel to the Guardrail – Not dipping down.

ET 31, Installation of Anchor Bracket

ET 31, Installation of Cable and Bearing Plate

Road Systems, Inc. SKT SP-MGS **Test Level 3**

SKT-SP-MGS

SKT-SP-MGS Post 1

Lower Post #1

Upper Post #1 6" x 6" x ¹/₈ Tube

SKT-SP-MGS Posts 1-2 (Hinged Post)

3/4" bolt at hinged post #2 on downstream side of the post

5/8" bolt at hinged post #1 on upstream side of the post

SKT-SP-MGS Post 2 (Hinged Post)

SKT-SP-MGS Posts 3-8 (Standard Line Posts)

SKT-SP-MGS Cable Anchor Bracket

Bolted to Rail w/ Special Shoulder Bolts (8 places)

SKT-SP-MGS Anchor Bracket Shoulder Bolts

innis

PROPRIETARY TERMINALS (cont.)

Standard C12: Traffic Barrier Terminal Type T1-A

For Ramp Installation with Design Speed <u>< 40 MPH</u>

Traffic Barrier Terminal Type T1-A (Special) without Gutter

12.5' counts toward length of need

Traffic Barrier Terminal Type T1-A (Special) with Gutter, Type G-2

Installation on Curve: Traffic Barrier Terminal Type T1 (Special) Traffic Barrier Terminal Type T1-A (Special)

No curved W-beam sections are permitted within terminal limits

ET-31, TL-2

Road Systems, Inc. SKT SP-MGS **Test Level 2**

ENERGY ATTENUATOR

QuadGuard HS-Energy Attenuator

QuadGuard HS-Energy Attenuator

QuadGuard HS-Energy Attenuator

QuadGuard – Concrete Pad

Pad shall be installed per manufacturer's requirements

Site Considerations

- Cross Slope < 8%
- Slope \triangle front to back \leq 2%
- Maximum curb height < 2"
- Cross slopes in front of unit

QuadGuard – Monorail

144

QuadGuard – Backup Assembly

QuadGuard – HS Diaphragms

QuadGuard – Fender Panel Assembly

QuadGuard – Fender Panel Assembly

QuadGuard – Transition Panels

150

QuadGuard – Transition Panels

Transition Panel to Guardrail

Asymmetrical – connects to MGS

Symmetrical – connects to previous standard

Cartridge Installation

TIPE I

Cartridge Placement

Placing a cartridge in the first or second bays, or placing a cartridge in the wrong bay may result in unacceptable crash performance as described in NCHRP 350.

Questions?

Energy Attenuators: QuadGuard

MEDIAN PIER PROTECTION

Standard C2: Median Pier Protection

E-Mail: tborchardt@getipass.com

