Illinois Tollway Base Sheet Revisions

Section M
Base Sheet Drawings
Effective: 03-01-2019

<table>
<thead>
<tr>
<th>Drawing</th>
<th>Modification Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BRG-500</td>
<td>EXPANSION JOINT FRAME RAIL AND SEAL ALTERNATIVE A</td>
</tr>
<tr>
<td></td>
<td>Updated sheet designation from EJ-SSJ to EJ-SS. Added distance to rail splice. Added</td>
</tr>
<tr>
<td></td>
<td>Neoprene Strip call out. Revised to constant barrier shape. Updated frame specification</td>
</tr>
<tr>
<td></td>
<td>of rail galvanizing callout to match Structural Design Manual.</td>
</tr>
<tr>
<td>M-BRG-501</td>
<td>EXPANSION JOINT FRAME RAIL AND SEAL ALTERNATIVE B</td>
</tr>
<tr>
<td></td>
<td>Updated sheet designation from EJ-SSJ to EJ-SS. Added distance to rail splice. Revised</td>
</tr>
<tr>
<td></td>
<td>to constant barrier shape.</td>
</tr>
<tr>
<td>M-BRG-503</td>
<td>BRIDGE (CONCRETE) MOUNTED SIGN SUPPORT</td>
</tr>
<tr>
<td></td>
<td>Revised c to b1 or b2 noting max distance. Added clarifying notes and updated</td>
</tr>
<tr>
<td></td>
<td>dimensions to all sections and details in the sheet. Updated Notes clarifying</td>
</tr>
<tr>
<td></td>
<td>ASTM and Standard references. Revised to constant barrier shape.</td>
</tr>
<tr>
<td>M-BRG-504</td>
<td>BRIDGE (STEEL) MOUNTED SIGN SUPPORT</td>
</tr>
<tr>
<td></td>
<td>Revised b to b1 or b2 noting max distance. Added clarifying notes and updated</td>
</tr>
<tr>
<td></td>
<td>dimensions to all sections and details in the sheet. Updated Notes clarifying</td>
</tr>
<tr>
<td></td>
<td>ASTM and Standard references. Revised to constant barrier shape.</td>
</tr>
<tr>
<td>M-BRG-507</td>
<td>CRASH WALL MODIFICATIONS MEDIAN PIERS</td>
</tr>
<tr>
<td></td>
<td>Added end distance of crash wall to face of column. Added u-shape bars at end face of</td>
</tr>
<tr>
<td></td>
<td>crash wall.</td>
</tr>
<tr>
<td>M-BRG-508</td>
<td>CRASH WALL MODIFICATIONS SHOULDER PIERS</td>
</tr>
<tr>
<td></td>
<td>Added MIN. to bar size.</td>
</tr>
<tr>
<td>M-BRG-509</td>
<td>36" PPC BULB-T BEAM</td>
</tr>
<tr>
<td></td>
<td>Added end studs in Elevation Beam. Noted maximum spacing of G7 and G8 bars. Added</td>
</tr>
<tr>
<td></td>
<td>description of Section C-C. Revised G4 bar.</td>
</tr>
<tr>
<td>M-BRG-510</td>
<td>36" PPC BULB-T BEAM DETAILS</td>
</tr>
<tr>
<td></td>
<td>Added table for Calculated Prestress Losses. Added reference to Standard Specification</td>
</tr>
<tr>
<td></td>
<td>and Structure Design Manual in the Notes and Note to Designer.</td>
</tr>
<tr>
<td>M-BRG-511</td>
<td>45" PPC BULB-T BEAM</td>
</tr>
<tr>
<td></td>
<td>Added end studs in Elevation Beam. Noted maximum spacing of G7 and G8 bars. Added</td>
</tr>
<tr>
<td></td>
<td>description of Section C-C.</td>
</tr>
<tr>
<td>M-BRG-512</td>
<td>45" PPC BULB-T BEAM DETAILS</td>
</tr>
<tr>
<td></td>
<td>Added table for Calculated Prestress Losses. Added reference to Standard Specification</td>
</tr>
<tr>
<td></td>
<td>and Structure Design Manual in the Notes and Note to Designer.</td>
</tr>
<tr>
<td>M-BRG-513</td>
<td>54" PPC BULB-T BEAM</td>
</tr>
<tr>
<td></td>
<td>Added end studs in Elevation Beam. Noted maximum spacing of G7 and G8 bars. Added</td>
</tr>
<tr>
<td></td>
<td>description of Section C-C.</td>
</tr>
<tr>
<td>M-BRG-514</td>
<td>54" PPC BULB-T BEAM DETAILS</td>
</tr>
<tr>
<td></td>
<td>Added table for Calculated Prestress Losses. Added reference to Standard Specification</td>
</tr>
<tr>
<td></td>
<td>and Structure Design Manual in the Notes and Note to Designer.</td>
</tr>
<tr>
<td>M-BRG-515</td>
<td>72" PPC BULB-T BEAM</td>
</tr>
<tr>
<td></td>
<td>Added end studs in Elevation Beam. Noted maximum spacing of G7 and G8 bars. Added</td>
</tr>
<tr>
<td></td>
<td>description of Section C-C.</td>
</tr>
<tr>
<td>M-BRG-516</td>
<td>72" PPC BULB-T BEAM DETAILS</td>
</tr>
<tr>
<td></td>
<td>Added table for Calculated Prestress Losses. Added reference to Standard Specification</td>
</tr>
<tr>
<td></td>
<td>and Structure Design Manual in the Notes and Note to Designer.</td>
</tr>
<tr>
<td>M-BRG-517</td>
<td>36", 45", 54" and 72" PPC BULB-T BEAMS DETAILS</td>
</tr>
<tr>
<td></td>
<td>Added clarifying notes to Camber & Deflection Diagram and updated Note to Designer.</td>
</tr>
<tr>
<td></td>
<td>Changed sheet reference.</td>
</tr>
<tr>
<td>M-BRG-518</td>
<td>36" PPC BULB-T BEAM INTERIOR STEEL DIAPHRAGMS</td>
</tr>
<tr>
<td></td>
<td>Added note for bolt hole location in reference to prestress strands.</td>
</tr>
<tr>
<td>M-BRG-519</td>
<td>45" PPC BULB-T and 54" PPC BULB-T BEAMS INTERIOR STEEL DIAPHRAGMS</td>
</tr>
<tr>
<td></td>
<td>Updated BRG sheet reference. Revised Notes adding note for location of inserts/holes</td>
</tr>
<tr>
<td></td>
<td>for diaphragm to web connection. Added note for bolt hole location in reference to</td>
</tr>
<tr>
<td></td>
<td>prestress strands at Interior Beams Thru Diaphragm.</td>
</tr>
<tr>
<td>M-BRG-520</td>
<td>72" PPC BULB-T BEAM INTERIOR STEEL DIAPHRAGMS</td>
</tr>
<tr>
<td></td>
<td>Revised Notes adding note for location of inserts/holes for diaphragm to web</td>
</tr>
<tr>
<td></td>
<td>connection.</td>
</tr>
<tr>
<td>M-BRG-521</td>
<td>RAILROAD BRIDGE FENCE</td>
</tr>
<tr>
<td></td>
<td>Updated BRG sheet reference. Added note for post installation in the Designer Notes.</td>
</tr>
<tr>
<td></td>
<td>Added maximum dimension between pull post assembly. Added note to designer to verify</td>
</tr>
<tr>
<td></td>
<td>limits of fencing in the bridge approaches.</td>
</tr>
<tr>
<td>M-BRG-522</td>
<td>PPC U-BEAM PRETENSIONED</td>
</tr>
<tr>
<td></td>
<td>Updated Notes adding notes for lifting embeddings installation and girder handling</td>
</tr>
<tr>
<td></td>
<td>and placement during shipment and erection. Revised Designer Notes BRG sheet</td>
</tr>
<tr>
<td></td>
<td>reference, revised camber multiplier based on beam type and added note for girder</td>
</tr>
<tr>
<td></td>
<td>dimensioning. Revised U-BEAM SCHEDULE table and added SHIPPING AND HANDLING DETAILS.</td>
</tr>
<tr>
<td></td>
<td>Added lifting bars and clarifying dimensions and notes into U-BEAM ELEVATION. Added</td>
</tr>
<tr>
<td></td>
<td>bars and bar notation in TYPICAL U-BEAM SECTION.</td>
</tr>
<tr>
<td>M-BRG-523</td>
<td>72" & 84" PPC U-BEAM POST-TENSIONED</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Added bar designation in U-BEAM reinforcement. Added CG of Total Post-Tensioning Strands notifying E1, E2 and E3. Added POST-TENSIONING TABLE. Revised STRESSING SEQUENCE adding note for contractor to submit stressing and elongation calculations to the engineer. Replaced DESIGN section with POST-TENSIONING NOTES including design notes.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M-BRG-526</th>
<th>DEMOLITION PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added SCOPE OF WORK and LIMITATIONS to be included in the demolition plans. Added note to NOTE TO DESIGNER/CONTRACTOR to provide sequence of load placement to verify structure can withstand the new loads without damage.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M-BRG-527</th>
<th>ERECTION PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added SCOPE OF WORK and LIMITATIONS to be included in the demolition plans. Added note to NOTE TO DESIGNER/CONTRACTOR to provide sequence of load placement to verify structure can withstand the new loads without damage.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M-BRG-528</th>
<th>ERECTION PLAN - STEEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added SCOPE OF WORK and LIMITATIONS to be included in the demolition plans. Added note to NOTE TO DESIGNER/CONTRACTOR to provide sequence of load placement to verify structure can withstand the new loads without damage.</td>
<td></td>
</tr>
</tbody>
</table>
NOTE A:

- BENT RAILS WELDED TO FRAME
- THREAD STUDS ~ 0.1" X 1/2"
- 2" MIN. 5" MAX.
- 3" MIN. AS REQ'D BY DESIGN PAV'T. APPROX.
- 3" MIN. BACKWALL

ANCHOR EXP. ~ 3" EMBEDMENT LENGTH

EXP. ANCHOR WITH BEAM TOP/P.P.C. AND EXP. ANCHOR ~ P.P.C. BEAM ~ BRG.

BENT 'S EXP. JOINT ~ BRG.

3" TO FRAME RAILS FOR CONNECTION SLOTTED HOLE AS REQ'D BY DESIGN

4" TO FRAME RAILS OR GIRDER TOP/STEEL BEAM

NOTE TO DESIGNER

NOTE: SEAL ALTERNATIVE A OR ALTERNATIVE B.
SET. REMOVED PRIOR TO INSERTION OF THE SHEET INTO THE CONTRACT. ALL "NOTE TO DESIGNER" BOXES SHALL BE REMOVED FROM THE SHEETS UPON ITS COMPLETION AND INSERTION INTO A CONTRACT. THE DESIGNER SHALL ACCEPT THE RESPONSIBILITY OF THE DESIGN OF THIS SHEET AND ITS COMPLETION AND INSERTION INTO A CONTRACT. THE DESIGNER PRIOR TO INSERTION INTO A CONTRACT.

NOTE:
WORK HARD DRAWING WITH THE BASE SHEETS M-BRG-500 AND SEAL ALTERNATIVE A OR ALTERNATIVE B.
TYPICAL FRONT ELEVATION

SECTION A-A

SECTION B-B

SECTION C-C

SECTION D-D

SECTION E-E

SECTION F-F

SECTION G-G

DETAIL Z

DETAIL Y

DETAIL 1

DETAIL 2

DETAIL 3

NOTES:

1. All structural steel plates and welded shapes shall conform to the requirements of ASTM A572 and A36. All welded connections shall be fabricated in accordance with AASHTO M111. Structural steel shall be hot-dipped galvanized, and all structural steel shapes, plates, and pipe shall be ASTM A572 Gr. 50 or equivalent.

2. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

3. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

4. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

5. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

6. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

7. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

8. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

9. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

10. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

11. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

12. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

13. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

14. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

15. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

16. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

17. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

18. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

19. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

20. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

21. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

22. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

23. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

24. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.

25. All structural steel, bolts, angles, and channel shall be in accordance with A36 standards. All structural steel shapes shall be ASTM A992 or equivalent. All structural steel plates shall be ASTM A36 or equivalent.
NOT TO DESIGNER

This base sheet shows typical retrofit construction to be used as a guide. Any deviation from this sheet must be approved by IFTA.

CONCRETE MEDIAN BARRIER TRANSITION TAPER LENGTHS, PAY LIMITS, MATERIAL, TYPE A

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-01-2019</td>
<td>CRASH WALL MODIFICATIONS MEDIAN PIERS</td>
</tr>
</tbody>
</table>

SECTION A-A

- Protection for existing median pier without crash wall.

SECTION B-B

- Protection for existing median pier with crash wall.

NOTES:

1. Remove existing concrete crashwall back to face of column prior to placing concrete around existing crashwall and columns, unless otherwise shown.

2. Concrete median barrier transition taper length, pay limit, and basis of payment all in accordance with the Illinois Tollway standard drawings C13, C14 and the special provisions.

3. The clear cover for permanent bars to the surface of concrete shall be 2" unless otherwise shown.

4. Reinforcement bars designated *not* shall be epoxy coated.

5. Existing concrete edges shall have new concrete cutters and columns. Reinforcement edges shall be cutters, a minimum of 9" point before cutting edge.

6. Concrete median barrier shall be closed to the existing shoulders of all work in progress.

SEALANT DETAIL

- Performance bars omitted for clarity.

SECTION A-A

- Protection for existing median pier without crash wall.

SECTION B-B

- Protection for existing median pier with crash wall.

NOTES:

1. Remove existing concrete crashwall and columns to face of columns prior to placing concrete around existing crashwall and columns, unless otherwise shown.

2. Concrete median barrier transition taper length, pay limit, and basis of payment all in accordance with the Illinois Tollway standard drawings C13, C14 and the special provisions.

3. The clear cover for permanent bars to the surface of concrete shall be 2" unless otherwise shown.

4. Reinforcement bars designated *not* shall be epoxy coated.

5. Existing concrete edges shall have new concrete cutters and columns. Reinforcement edges shall be cutters, a minimum of 9" point before cutting edge.

6. Concrete median barrier shall be closed to the existing shoulders of all work in progress.
NOTE: FOOT 6 36 SPA. @ 5"=15'-0" SPACING #5 G BARS OF BEAM MIN. LAP (LENGTHS)

PLACE AT STIRRUP SPACING SPACING TO BE DESIGNED

$\frac{1}{2}''$ HOLE TYP. EACH END, LOCATE AS NECESSARY TO AVOID CONFLICT WITH REBAR AND STRANDS.

NOTE TO DESIGNER

PRESTRESSING STRAND PATTERN AT MIDSPAN

BILL OF MATERIAL

PRESTRESSED CONCRETE BULB-T BEAM, 36"

NOTE: M-BRG-509 THIS SHEET WITH BASE SHEET M-BRG-510.
NOTE TO DESIGNER

BEAM CAST WITH
ANCHOR ` AT EACH END

ANCHOR @ EACH END CAST WITHIN BEAM

NOTE TO DESIGNER

PLAN-BOTTOM FLANGE DETAIL
AT END OF BEAM

NOTE:

THIS SHEET SHOWS TYPICAL NEW CONSTRUCTION BUT IT IS NOT A STANDARD DRAWING. IT REQUIRES COMPLETION BY THE DESIGNER PRIOR TO INSERTION INTO A CONTRACT.

THE DESIGNER SHALL ACCEPT THE RESPONSIBILITY OF THE DESIGN AND WRITING OF THIS SHEET AND VERIFY REPORTED LENGTHS AND STANDARDS. THE DESIGNER SHALL INFORM THE CONTRACTOR OF ITS INTENT TO INSERT THIS SHEET INTO THE PLAN AND BILL OF MATERIAL.

BILL OF MATERIAL

ITEM	UNIT	TOTAL
PRESTRESSED CONCRETE BULB-T BEAM, 45" | FOOT | ~

LOCATIONS OF DRAPED STRANDS
LOCATIONS OF BOND BREAKER

LOCATION OF DRAPE STRANDS
LOCATION OF BOND BREAKER

Semi-InTEGRAL TYP. AT ABUT. ENDS ONLY

STRANDS NOT SHOWN

PLAN-BOTTOM FLANGE DETAIL
AT END OF BEAM

LOCATION OF BOND BREAKER

NOTE:

PLACE AT STIRRUP SPACING
SPACE TO BE DESIGNED

ELEVATION OF BEAM
(SHOWING REINFORCEMENT AND DIMENSIONS)

ELEVATION OF BEAM
(SHOWING PRESTRESSING STEEL)

SECTION A-A

SECTION B-B

SECTION C-C

NOTE TO DESIGNER

THIS SHEET SHOWS TYPICAL NEW CONSTRUCTION BUT IT IS NOT A STANDARD DRAWING. IT REQUIRES COMPLETION BY THE DESIGNER PRIOR TO INSERTION INTO A CONTRACT.

THE DESIGNER SHALL ACCEPT THE RESPONSIBILITY OF THE DESIGN AND WRITING OF THIS SHEET AND VERIFY REPORTED LENGTHS AND STANDARDS. THE DESIGNER SHALL INFORM THE CONTRACTOR OF ITS INTENT TO INSERT THIS SHEET INTO THE PLAN.

SET. REMOVED PRIOR TO INSERTION OF THE SHEET INTO THE PLAN

OF THIS SHEET UPON ITS COMPLETION AND INSERTION INTO A CONTRACT. ALL "NOTE TO DESIGNER" BOXES SHALL BE REMOVED PRIOR TO INSERTION OF THE SHEET INTO THE PLAN.
NOTE TO DESIGNER

ILLINOIS TOLLWAY

THIS BASE SHEET SHOWS TYPICAL NEW CONSTRUCTION BUT IT IS NOT A STANDARD DRAWING. IT REQUIRES COMPLETION BY THE DESIGNER PRIOR TO INCLUSION INTO A CONTRACT. ADEQUATE DRAWING FILES AND THE "CADD STANDARDS MANUAL" ARE AVAILABLE ON THE ILLINOIS TOLLWAY WEBSITE. THE DESIGNER SHALL ACCEPT THE RESPONSIBILITY OF THE DESIGN OF THIS SHEET UPON ITS COMPLETION AND INSERTION INTO A CONTRACT. "NOTE TO DESIGNER" BOXES SHALL BE REMOVED PRIOR TO INCLUSION INTO THE PLAN SET.

NOTES:

1. SPECIFY CONCRETE STRENGTH AS REQUIRED BY DESIGN FROM A MINIMUM OF 6000 PSI TO A MAX. OF 8000 PSI. MAXIMUM RELEASE STRENGTH IS 10,000 PSI.

2. PRESTRESSING STRANDS SHALL BE 0.6" DL, HOMOGENEOUS, 7-WIRE LOW RELAXATION for all strand spacings shown for #4 stirrups is for grade 60 reinforcement. All girders shall be cast full length as shown.

3. INSERTION OF THE SHEET INTO THE PLAN SET.

4. CONCRETE SEALER SHALL BE APPLIED TO ALL SMOOTH SURFACES INCLUDING THE TOP OF BEAM TO BE ROUGH FLOATED AND BROOMED TRANSVERSELY, EXCEPT THE OUTSIDE 8" OF BEAM, WHICH SHALL RECEIVE A SMOOTH FINISH. AN APPROVED NON-BITUMINOUS JOINT SEALER. FOR BEAM ENDS THAT ARE FINALLY EXPOSED, COAT THE BEAM ENDS, EXPOSED STRAND ENDS AND ALL NON-BONDING SURFACES WITHIN 2 FEET OF THE BEAM ENDS WITH A NON-PENETRATING EPOXY CONTINUOUSLY TO A depth of 1" for grade 1, class B or C. THE EPOXY SHALL BE APPLIED 3 DAYS AFTER WOIST CURING HAS CEASED AND PRIOR TO THE APPLICATION OF THE SEALER.

5. ALL BARS SHALL BE CAST FULL LENGTH AS SHOWN.

6. SPACING SHOWN FOR #4 STIRRUPS IS FOR GRADE 60 REINFORCEMENT. PRESTRESSING STRANDS SHALL BE 0.6" DL. THERE IS NO RELAXATION FOR ALL PATTERNS WITH AN ULTIMATE STRENGTH OF 270,000 PSI. THE MAX NUMBER OF PRESTRESSING STRANDS SHALL BE 0.6" DIA., 7-WIRE LOW RELAXATION for all strand spacings shown for #4 stirrups is 16.

7. INSERTS FOR "THREADED END ROSES" WHEN SPECIFIED AT EXPANSION JOINT ENDS SHALL BE TYPICAL, FlARE-LOOP TYPE FOR EXTERIOR BEAMS AND SINGLE-FERRULE, FLARE-LOOP TYPE FOR EXTERIOR BEAMS.

10. THE DESIGN ENGINEER DETERMINES THE PRODUCTION OF BAR G BASED ON 1/2" MIN. SLOPE AT BEAMS AT CENTERLINE OF BEARINGS. THE ILLINOIS TOLLWAY IS REQUIRED IF DESIGN OF THE END SUPPORTS."
NOTES:

1. Specify concrete strength as required by design from a minimum of 6,000 psi to a max. of 8,000 psi. Maximum release strength is 6,800 psi.

2. Reinforcement in standard end section of the beam is based on Strand patterns listed on this sheet. The maximum span length shown in Figure 13.2.2.1 of Tollway Structure Design Manual. Using different strand patterns will require a complete design of this reinforcement. Prior approval from the Illinois Tollway is required if design of the end reinforcement is required.

3. The design engineer determines the projection of bar based on 0.6' x 0.6' bar. Branch length at end of beam at centerline of bearing. V-slope, profile, grade line and calculated residual beam camber, including the camber multiplier of 1.2. This value can vary and should be given for each of the beam length. Provide values that maintain 3" min. deck embedment and 3/4" clear from top of deck while accounting for 2% variance in actual camber versus the calculated residual camber.

CALCULATED PRESTRESS LOSSES

- Elastic Shortening Losses
- Long Term Losses
- Total Losses

54" PPC BULB-T BEAM DETAILS

M-BRG-514

DATE

03/24/2011
NOTE: (SHOWING REINFORCEMENT AND DIMENSIONS)
CAMBER & DEFLECTION DIAGRAM

- **A**: Prestress Camber
- **B**: Dead Load Deflection
- **C**: Residual Camber

ROUND OFF TO NEAREST 1/8"
NOTES:

- All diaphragm assembly material shall be furnished in accordance with the requirements of the contract.
- All diaphragm steel shall be ASTM A709 Grade 36 or 50. All bolts, nuts and washers shall be ASTM A325 Type 1.
- Galvanized nuts shall be tapped hot-dipped galvanized in accordance with ASTM A153 Class C. All bolts and nuts shall be coated in accordance with supplementary requirement S1 of ASTM A563, and test for coated nuts.
- For diaphragms between beams, see Detail B. For diaphragms at mid-length of beam, see Detail C.
- For spans equal to or less than 80'-0", place one diaphragm at mid-length of beam. For spans over 80'-0", place one diaphragm at 1'-8".

DETAIL C

-センターのヒトデは、鋼材の切り欠きを有する。
-すべてのボルト、ナット、ワッシャーは、 ASTM A325 Type 1 と規定されています。
-ガルバニズドナットは、 ASTM A153 Class C に従って、ナットをめぐらされた熱処理されたガルバニズドで、テストをする。

DETAIL B

-デッキの上部に位置する。
-全てのボルト、ナット、ワッシャーは、 ASTM A325 Type 1 と規定されています。
-ガルバニズドナットは、 ASTM A153 Class C に従って、ナットをめぐらされた熱処理されたガルバニズドで、テストをする。

SECTION AT INTERIOR BEAMS THRU DIAPHRAGM FOR SKEW ANGLES > 10°

-ディアフラグム面に位置する。
-全てのボルト、ナット、ワッシャーは、 ASTM A325 Type 1 と規定されています。
-ガルバニズドナットは、 ASTM A153 Class C に従って、ナットをめぐらされた熱処理されたガルバニズドで、テストをする。

NOTE TO DESIGNER

-このシートは、新たな構造物を示すもので、設計者はその設計の責任を負うこと。
NOTES:

All diaphragm assembly material shall be paid for by the contractor and purchased for furnishing and erecting structural steel. Each diaphragm between beams shall constitute one unit.

All diaphragm structural steel shown shall be ASTM A36 or ASTM A992. All bolts, nuts and washers shall be high-strength grade 50. All diaphragms shall be erected in accordance with the requirements of ASTM A92. All beams shall meet the requirements of supplementary requirements 1A of ASTM A572, grade 50.

For spans equal to or less than 80'-0", place one diaphragm at mid-length of beam. For spans over 80'-0", place at mid-span and at 45'-0" mark. In the beam plan show location of prestress strands for diaphragm to web connection from the bottom of the beam (DIM "A" and "B") and also from the ends of each beam.

All diaphragm steel shown shall be furnished and erected in accordance with the requirements of this contract. All "NOTE TO DESIGNER" boxes shall be removed prior to insertion of this sheet into the contract. The designer shall accept the responsibility of the design of this base sheet showing typical new construction but it is not a standard drawing. It requires completion by the designer prior to insertion into a contract.

All prestressed concrete beam shown shall be furnished and erected in accordance with the requirements of this contract. The designer shall accept the responsibility of the design of this base sheet showing typical new construction but it is not a standard drawing. It requires completion by the designer prior to insertion into a contract.

The designer shall accept the responsibility of the design of this base sheet showing typical new construction but it is not a standard drawing. It requires completion by the designer prior to insertion into a contract.
1" WT 6 X 13.0 COPE FLG. (TYP) ANGLE 6" X 4" X Š" PART TRANSVERSE SECTION AT DIAPHRAGM

NOTES:
- ALL DIAPHRAGM ASSEMBLY MATERIAL SHALL BE PAID FOR AT THE CONTRACT LUMP SUM PRICE, REDUCED FOR FURNISHING AND ERECTING STRUCTURAL STEEL.
- EACH DIAPHRAGM BETWEEN BEAMS SHALL CONSTITUTE ONE UNIT.

DIAPHRAGM SUPPORT & ANGLE CONNECTIONS
- CENTERS OF FASTENERS FOR THE MINIMUM DISTANCE BETWEEN HOLE FOR 7/8" " BOLT.
- " HOLE FOR 7/8" " BOLT.
- " HOLE FOR 7/8" " BOLT.
- ALL DIAPHRAGM ASSEMBLY MATERIAL SHALL BE PAID FOR AT THE CONTRACT LUMP SUM PRICE, REDUCED FOR FURNISHING AND ERECTING STRUCTURAL STEEL.

DIAPHRAGM FOR SKEW ANGLES > 10°
- " ELECTROPLATED CAP SCREW " X 1" SHORT SLOTTED HOLE FOR 7/8" " BOLT.
- " ELECTROPLATED CAP SCREW " X 2" LONG SLOTTED HOLE FOR 7/8" " BOLT.
- " ELECTROPLATED CAP SCREW " X 2" LONG SLOTTED HOLE FOR 7/8" " BOLT.
- " ELECTROPLATED CAP SCREW " X 2" LONG SLOTTED HOLE FOR 7/8" " BOLT.
- " ELECTROPLATED CAP SCREW " X 2" LONG SLOTTED HOLE FOR 7/8" " BOLT.
- " ELECTROPLATED CAP SCREW " X 2" LONG SLOTTED HOLE FOR 7/8" " BOLT.
- " ELECTROPLATED CAP SCREW " X 2" LONG SLOTTED HOLE FOR 7/8" " BOLT.
- " ELECTROPLATED CAP SCREW " X 2" LONG SLOTTED HOLE FOR 7/8" " BOLT.
- " ELECTROPLATED CAP SCREW " X 2" LONG SLOTTED HOLE FOR 7/8" " BOLT.
- " ELECTROPLATED CAP SCREW " X 2" LONG SLOTTED HOLE FOR 7/8" " BOLT.
ELEVATION OF OUTSIDE FACE OF BARRIER PARAPET AND FENCE

- **NOTE:** FENCING SHALL NOT ANCHOR TO THE TOP OF PARAPETS.

DESIGNER NOTES:
1. **FULL POST ASSEMBLIES ARE REQUIRED AT MAXIMUM INTERVALS OF 200 FT.** SEE SHEET 2 OF THIS SERIES.
2. **INSTALL POSTS PERMANENTLY WITH A TOLERANCE OF ± 1/16 IN. USE SHOCK-ABSORBING PLATES AS REQUIRED TO ACHIEVE PLANS. INSTALL CHAIN LINK FENCE IN ACCORDANCE WITH ASME P56.1/A AS APPLICABLE.**
3. **FENCING SHALL NOT BE SPliced BY PICKETS. FENCING SPlices IF REQUIRED SHALL ONLY OCCUR AT POSTS AT A MAXIMUM OF 100 FT. BETWEEN SPlices, ADD THIS NOTE TO PLANS.**
4. **RAILROAD BRIDGE FENCE SHALL BE DETAILLED ON SUPERSTRUCTURE DRAWING.**
5. **COORDINATE LIMITS OF RAILROAD BRIDGE FENCE WITH SPECIFIC RAILROAD REQUIREMENTS.**
6. **VERIFY LIMITS OF THE FENCING REQUIREMENTS ON THE BRIDGE APPROACH PARAPET OR BARRIER.**

DRAWING CONTENTS:
- **PIPE CLAMP CONNECTION AS DETAIL ON BASE SHEET 2 OF 2 W-BRG-520**
- **PARAPET OR BARRIER**
- **DETAIL A**
- **PIECE RPENT**
- **PIPE CLAMP**
- **BRACE RAIL**
- **VIEW A-A**
HEX NUTS AND WASHERS SET IN DRILLED HOLES WITH HEAVY ADHESIVE-BONDED ANCHORS (SHOWN). 2-1/2" C-I-P ANCHOR RODS OR DEPTH EMBEDMENT REQUIRED AT BOTH ENDS OF TIE WIRE (TYP.).

GAUGE ZINC COATED TIE WIRE (TRIPLE WRAP TIE TENSION WIRE TO POST WITH NO. 9 TENSION WIRE HOG RINGS @ 2'-0" CENTERS.

BRACE RAIL (TYP.)

POST CAP 2'-0" CENTERS HOG RINGS @ 1'-6".

(SEE SPACER DETAIL)

EXPANSION JOINT OPENING AND 9". DIMENSION BY THE DIFFERENCE BETWEEN THE EXPANSION JOINT OPENINGS 9" OR LESS. IF THE EXPANSION JOINT OPENING EXCEEDS 9", INCREASE THIS DIMENSION BY THE DIFFERENCE BETWEEN THE EXPANSION JOINT OPENING AND 9".

NOTE TO DESIGNER

THE INSTALLATION OF ALL STRUCTURAL SHEETS SHOULD BE PERMITTED AT THE DISCRETION OF THE DESIGNER PRIOR TO INSERTION OF THE SHEET INTO THE PLAN SET. THIS BASE SHEET SHOWS TYPICAL NEW CONSTRUCTION BUT IT VARIES (1'-0" MAX.) (TYP.)

THE DESIGNER SHALL ACCEPT THE RESPONSIBILITY OF THE DESIGN PRIOR TO INSERTION INTO A CONTRACT. THE "NOTE TO DESIGNER" SHALL BE REMOVED FROM THIS SHEET UPON ITS COMPLETION AND INSERTION INTO A CONTRACT. THE "NOTE TO DESIGNER" SHALL BE REMOVED FROM THIS SHEET UPON ITS COMPLETION AND INSERTION INTO A CONTRACT.

THE DESIGNER PRIOR TO INSERTION INTO A CONTRACT.

...
TYPICAL U-BEAM SECTION

REINFORCEMENT SIZES AT SPAN

TYPICAL U-BEAM PRESTRESSING

PRETENSIONED

NOTE TO DESIGNER

This page sheet shows typical new construction. It is not a standard drawing. It requires the designer to accept the responsibility of the design of this sheet which may be compatible to the Illinois Tollway website. The designer shall accept the responsibility of the design of this sheet, and it is not part of the standard drawing. The designer shall accept all note to design boxes shall be removed prior to insertion of the sheet into the plan set.
FORMED WEB ELEVATIONS MUST BE ADJUSTED UPWARD FOR AN INDICATED FACTOR OF THREE (3) MULTIPLIER TO ACCOUNT FOR LONG TERM CREEP.

INSTANTANEOUS EFFECTS OF DEAD LOAD AND PRESTRESSING, AND A THE DEFLECTION SHOWN IS POSITIVE DOWNWARD. IT INCLUDES THE ASSUMED IN THE DESIGN MUST BE APPROVED BY THE ENGINEER.

DEVIATIONS FROM THE DUCT PATTERN, DUCT SIZE, AND STRAND SIZE THAT WAS USED ON THE LIVE END.

STEEL SHALL PERMIT JACKING WITH THE SAME JACKING EQUIPMENT ANCHORAGE SYSTEM AND LENGTH OF PROJECTING PRESTRESSING WHERE DEAD END ANCHORAGE AND TENDONS ARE ACCESSIBLE, THE ALIGNMENT SHALL BE ADJUSTED AS APPROVED BY THE ENGINEER.

NOTES:

STRESSING SEQUENCE:

CONSTRUCTION SHALL SUBMIT THE STRESSING AND ELONGATION CALCULATIONS TO THE ENGINEER FOR APPROVAL, ALL LOSSES DUE TO TENDON VERTICAL AND CENTERLINE OF THE TYPICAL SECTION. P(JACK) IS THE SUM OF THE PEAK FORCE IS OBTAINED AND IS DISTRIBUTED SYMMETRICALLY ABOUT THE CENTERLINE OF THE STRUCTURE.

TOTAL PRESTRESSING FORCE BE APPLIED ECCENTRICALLY ABOUT THE CENTERLINE OF THE STRUCTURE.

AT NO TIME DURING THE STRESSING OPERATIONS WILL MORE THAN 10% OF THE TOTAL PRESTRESSING FORCE BE APPLIED ELLIPTICALLY ABOUT THE CENTERLINE OF THE STRUCTURE.

NO MORE THAN 5% OF THE PRESTRESSING FORCE IN ANY WEB MAY BE STRESSED BEFORE AN EQUAL FORCE IS STRESSED IN THE ADJACENT WEB. AT NO TIME DURING THE STRESSING OPERATIONS WILL MORE THAN 10% OF THE TOTAL PRESTRESSING FORCE BE APPLIED ELLIPTICALLY ABOUT THE CENTERLINE OF THE STRUCTURE.

5. AT THE CONSTRUCTION SIGHT, THE STRESSING FORCE MAY VARY HERE FROM THE THEORETICAL FORCE PROVIDED IN THE DESIGN. THE STRESSING FORCE IS TO BE ADJUSTED ELLIPTICALLY ABOUT THE CENTERLINE OF THE TYPICAL SECTION PRIOR TO THE CONSTRUCTION'S APPROPRIATELY ALIGNED TO THE CENTERLINE OF THE STRUCTURE.

6. BOTTOM FLANGE TENDONS TO BE STRESSED AT CASTING YARD OR ON SITE BEFORE CLOSURE POURS ARE FORMED AND CAST.

POST-TENSIONING NOTES:

THE MINIMUM COMPRESSIVE STRENGTH OF THE CLOSURE-PLATE CONCRETE AT THE TIME OF POST-TENSIONING SHALL BE AS SHOWN IN POST-TENSIONING TABLE.

THE MAXIMUM ELECTRIC TENSION OF THE DUCTS SHALL BE 60 KSI.

THE PEAK OF THE PEAK SHALL BE AT LEAST 20 TIMES THE NET AREA OF THE PRESTRESSING STEEL IN THE DUCT.

THE DESIGN IS BASED ON 0.6" DIA. LOW RELAXATION STRANDS WITH A CURVATURE FRICTION COEFFICIENT, MEETING THE REQUIREMENT OF ASTM A416 GRADE 270 WITH AN ELASTIC SHORTENING OF THE PRESTRESSING STRANDS SHOWN IN THE POST-TENSIONING TABLE WITHOUT THE PRESTRESSING STEEL STRESSED.

THE ACTUAL ANCHOR SET AND JACKING FORCE USED BY THE CONTRACTOR SHALL BE SPECIFIED IN THE SHOP PLANS AND INCLUDED IN THE STRESSING AND ELONGATION CALCULATIONS.

THE DESIGN IS BASED ON ESTIMATED TENDON LOSS OF POST-TENSIONING TENDONS SHOWN IN THE POST-TENSIONING TABLE FOR ALL TENDONS STRESSED AT THE CASTING YARD OR ON SITE BEFORE CLOSURE POURS ARE FORMED AND CAST.

THE POST-TENSIONING NOTES SHOWN IN THE POST-TENSIONING TABLE SHALL NOT BE ADJUSTED.

THE NET AREA OF THE PRESTRESSING STEEL IN THE DUCT.

THE MAXIMUM ELECTRIC TENSION OF THE DUCTS SHALL BE 60 KSI.

THE AREA OF THE DUCT SHALL BE AT LEAST 2.5 TIMES THE MAXIMUM OUTSIDE DIAMETER OF THE DUCT.

THE MINIMUM COMPRESSIVE STRENGTH OF THE CAST-IN-PLACE CONCRETE AT THE CLOSURE AT THE TIME OF POST-TENSIONING.

THE MINIMUM COMPRESSIVE STRENGTH OF THE CAST-IN-PLACE CONCRETE AT THE CLOSURE AT THE TIME OF POST-TENSIONING.

THE DESIGN IS BASED ON 0.6" DIA. LOW RELAXATION STRANDS WITH A CURVATURE FRICTION COEFFICIENT, MEETING THE REQUIREMENT OF ASTM A416 GRADE 270 WITH AN ELASTIC SHORTENING OF THE PRESTRESSING STRANDS SHOWN IN THE POST-TENSIONING TABLE WITHOUT THE PRESTRESSING STEEL STRESSED.

THE ACTUAL ANCHOR SET AND JACKING FORCE USED BY THE CONTRACTOR SHALL BE SPECIFIED IN THE SHOP PLANS AND INCLUDED IN THE STRESSING AND ELONGATION CALCULATIONS.

THE DESIGN IS BASED ON ESTIMATED TENDON LOSS OF POST-TENSIONING TENDONS SHOWN IN THE POST-TENSIONING TABLE FOR ALL TENDONS STRESSED AT THE CASTING YARD OR ON SITE BEFORE CLOSURE POURS ARE FORMED AND CAST.
This base sheet shows typical new construction but is not a standard drawing. It requires completion with respect to the methods, materials, and dimensions specified or indicated by the designer prior to insertion into a contract.

Microstation files and the "CADD Standards Manual" shall be used to create drawings of this sheet. The designer shall accept the responsibility of the design of this sheet upon its completion and insertion into a contract. All "Note to Designer" boxes shall be removed by the designer prior to insertion into the contract.

Note to designer:

This drawing is not a standard drawing. It requires completion with respect to the methods, materials, and dimensions specified or indicated by the designer prior to insertion into a contract. Microstation files and the "CADD Standards Manual" shall be used to create drawings of this sheet. The designer shall accept the responsibility of the design of this sheet upon its completion and insertion into a contract. All "Note to Designer" boxes shall be removed by the designer prior to insertion into the contract.

Illinois Tollway Bridges over Waterways

Illinois Tollway Bridges over Railroads

Illinois Tollway Bridges over Crossroads

Slopewall Details
Crane Information:

- **Crane A** - XXX Ton Hydro Swing Speed = XX MPH.
 - MAX Radius = XX'-XX".
 - Capacity at Radius = XX,XXX LBS.
 - Anticipated Maximum Weight = XX,XXX LBS.
 - Main Boom = XXX'.
 - Counterweight = XXX,XXX LBS.

- **Crane B** - XXX Ton Hydro Swing Speed = XX MPH.
 - MAX Radius = XX'-XX".
 - Capacity at Radius = XX,XXX LBS.
 - Anticipated Maximum Weight = XX,XXX LBS.
 - Main Boom = XXX'.
 - Counterweight = XXX,XXX LBS.

Configuration:

- Job Type: DEMOLITION PLAN VIEW

Demolition Sequence:

1. []
2. []
3. []
4. []
5. []
6. []
7. []
8. []
9. []
10. []

Scope of Work:

1. Location of Work Activities.
2. Load to be Lifted Description (Detail: Lifting Hoist, Dimensions of Load, Center of Gravity, Etc.)
4. Schedule with Specific Working Hours (Load/SAFE WORKING LOAD (SWL)) (%).
5. Contact with any Objects
6. Contact with any Object.
7. Contact with any Object.
8. Contact with any Object.
9. Contact with any Object.

Limitations:

- Site ground is suitable / non suitable for crane operation, pad size ______.
- Crane's superstructure rotates 360° without coming into contact with any object.
- Environment, including wind conditions, etc.
- Electrical hazards, overhead/underground, clearance issues.
- Minimum deflection to be considered are ______.

Design Considerations:

- Damage structure can withstand the new loads without cracking.
- BRACING or other temporary supports.
- Sequence shall address temporary blocking, spacing or other temporary supports.
- Sequence shall address temporary blocking, spacing or other temporary supports.

Utility Contacts:

- Utility contact required (list contact information).

Environmental Considerations:

- Damage structure can withstand the new loads without cracking.
- BRACING or other temporary supports.
- Sequence shall address temporary blocking, spacing or other temporary supports.
- Sequence shall address temporary blocking, spacing or other temporary supports.

Demolition Submittal Per the Contract Requirements:

- This base sheet is to be used as a guide by the contractor for preparation of a demolition submittal, per the contract requirements.
- This base sheet depicts demolition of concrete girder. Steel girders would be similar. Verification files are available on the Illinois Tollway website.
- Subject to the beam weights and identity cross frames to be removed during demolition.
- Note to designer/contractor: dimensions values or input data to be provided on submitted drawings.
- Sequence shall address temporary blocking, spacing or other temporary supports.
- Sequence of load placement shall confirm bracing or other temporary supports.
- Sequence shall address temporary blocking, spacing or other temporary supports.

Note to Designer/Contractor:

- This base sheet shows typical construction, but it is not a standard drawing. The sheet is to be used as a guide by the contractor for preparation of a demolition submittal per the contract requirements.
- This base sheet depicts demolition of concrete girder. Steel girders would be similar. Verification files are available on the Illinois Tollway website.
- Subject to the beam weights and identity cross frames to be removed during demolition.
- Note to designer/contractor: dimensions values or input data to be provided on submitted drawings.
- Sequence shall address temporary blocking, spacing or other temporary supports.
- Sequence of load placement shall confirm bracing or other temporary supports.
- Sequence shall address temporary blocking, spacing or other temporary supports.
NOTES TO DESIGNER/CONTRACTOR

THIS BASE SHEET SHOWS TYPICAL CONSTRUCTION BUT IT IS NOT A STANDARD DRAWING. THIS SHEET IS TO BE USED AS A GUIDE BY THE CONTRACTOR FOR PREPARATION OF A DEMOLITION SUBMITAL PER THE CONTRACT REQUIREMENTS. THIS BASE SHEET SHOWS DEMOLITION OF CONCRETE GIRDERS. STEEL GIRDERS WOULD BE SIMILAR. MICROSTATION FILES ARE AVAILABLE ON THE ILLINOIS TOLLWAY WEBSITE.

"XX" DESIGNATES DIMENSION VALUES OR INPUT DATA TO BE PROVIDED ON SUBMITTED DRAWING.
NOTES TO DESIGNER/CONTRACTOR

THIS SHEET SHOWS TYPICAL CONSTRUCTION BUT IT IS NOT A STANDARD DRAWING AND SHEET IS TO BE USED AS A GUIDE BY THE CONTRACTOR IN PREPARATION OF AN ERECTION SUBMITAL PER THE CONTRACT REQUIREMENTS. MICROSTATION FILES ARE AVAILABLE ON THE ILLINOIS TOLLWAY WEBSITE.

"XX" DESIGNATES DIMENSION VALUES OR PROVIDED DATA TO BE PROVIDED ON SUBMITTED DRAWING.

DATE: 3-31-2017

ERECTION PLAN - CONCRETE

M-ERG-527

SHEET 3 OF 3
NOTES TO DESIGNER/CONTRACTOR

This base sheet shows typical construction but is not a standard drawing. This sheet is to be used as a guide by the contractor for preparation of an erection plan - steel. Elevation and section views shown. Proposed temporary shoring and details shall be shown.

PROPOSED TEMPORARY SHORING AND DETAILS SHALL BE PROVIDED ON SUBMITTED DRAWING.