NOTES FOR HOT-MIX ASPHALT PRESSURE RELIEF JOINTS

1. Pavement shall be sawcut or bladed and full depth along a hatch line perpendicular to the edge of the pavement at locations shown on the plans or as determined by the Engineer. Joints between sawcuts shall be removed and the area shall be cleaned to the satisfaction of the Engineer.

2. The in-place density shall not be less than 95% of the bulk specific gravity of the binder material, except that if a target density has been previously established, the density shall be at least 95% of the target density. The in-place density of the mix shall be determined by use of the bulk specific gravity of the mix, bulk specific gravity of the binder material, and the HMA density of the mix, in accordance with AASHTO TG 10.

3. The removal of existing longitudinal tie bars or reinforcement shall be considered incidental to hot-mix asphalt pressure relief joint.

4. Exact locations and number of hot-mix asphalt pressure relief joints shall be determined by the Engineer in the field.

5. The contract unit price per square foot for hot-mix asphalt pressure relief joint shall include the cost of the saw cut or blading, full depth removal of existing pavement, hot-mix asphalt materials (tack coat and hot-mix asphalt concrete materials).

6. Refer to the contract documents for the required binder and surface course materials.

7. If required, aggregate for base course restoration will be measured and paid for in tons for section 11.

LEGEND

PCC Pavement

Properly Surface Course Drainage Channel for Sand

Asphalt Pothole with Proposed Overlays

Proposed Overlay

Granular Surface

HOT-MIX ASPHALT PRESSURE RELIEF JOINT
WITH PROPOSED OVERLAY

HOT-MIX ASPHALT PRESSURE RELIEF JOINT
WITHOUT PROPOSED OVERLAY
NOTES FOR BUTT JOINT, TYPE 1

1. The above work will be performed at the ends of all hot-mix asphalt surfaces. The removal of concrete pavement, if needed, will be included in the contract unit price per square yard for Portland cement concrete surface removal - butt joint. Hot-mix asphalt overlay to be paid for under Items "hot-mix asphalt binder course" and "hot-mix asphalt surface course" of the type specified in the contract.

2. Only approved scarifying or milling equipment shall be used to scarify the concrete pavement.

3. Regardless of type of surface mix used, number or thickness of courses or layers, the overlay thickness transition length shall be based on 3" to 2" and the maximum layer thickness shall be 2".

4. Refer to the contract documents for the required binder and surface course materials. **T** represents the thickness of the surface course specified in the contract. **t** represents the thickness of the binder course specified in the contract. See Note 3.

DETAIL OF BUTT JOINT, TYPE 2

NOTES FOR BUTT JOINT, TYPE 2

1. The above work will be performed at the ends of all hot-mix asphalt surfaces where butt joints exist. The removal of hot-mix asphalt overlay and base will be included in the contract unit price per square yard for "hot-mix asphalt surface removal - butt joint".

2. Hot-mix asphalt overlay to be paid under items "hot-mix asphalt binder course" and "hot-mix asphalt surface course" of the type specified in the contract.

3. Refer to the contract documents for the required binder and surface course materials.
1. PAVEMENT CROSS SECTION (2 LANES)

2. PAVEMENT PLAN
 2-LANE SECTION

GENERAL NOTES:
1. MEDIAN BARRIER ASSEMBLIES, WHERE USED, SHALL BE SUPPORTED AND
ANCHORED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.
2. MEDIAN BARRIER LANE ARE NOT BUILT IN THIS OPERATION. A
LONGITUDINAL JOINT SHALL BE REPLACED WITH SHARPED
LONGITUDINAL JOINT.
3. MATERIALS ARE PROJECT SPECIFIC, REFER TO PROJECT PLANS AND
CONTRACT DOCUMENTS FOR DETAILS.
4. SEE STANDARD AT PAVEMENT JOINT AND ERO DEWAS.
CONSTRUCTION JOINTS SHOWN FOR DETAILS OF JOINTS.
5. PAVEMENT DESIGN ARE PROJECT SPECIFIC, OTHER MATERIALS MAY
BE SUBMITTED WITH THE PROJECT PLANS FOR CRACK AND
WEAR AGGREGATE, REFER TO PROJECT PLANS FOR DETAILS AND MATERIAL
SPECIFICATIONS.

I I l l i n o i s T o l l w a y
Open Roads for a Brighter Future

J.P.C. PAVEMENT
12" OR LESS

STANDARD AS 01
See Note 4

1st Pour

1 1/2" x 18" long smooth epoxy coated
dowel bars on 12" centers

Bar Supports (type)

Heaver board drilled
for dowel bars removed
before second pour

NOTE: For 13" pavement use the following:
1 1/2" x 18" long on 9" centers or
1 3/4" x 18" long on 12" centers

Transverse Construction Joint
(Jointed Plain Concrete Pavement)

General Notes

1. Dowel bar caps shall be placed on opposite end of
adjacent dowel bars.

2. All dimensions are in inches unless otherwise shown.

3. T = Pavement thickness

4. A 16" saw cut shall be provided for pavement crack
control.
TRANVERSE TERMINAL JOINT (ADJACENT TO NEW CONSTRUCTION)
SECTION B-B

TRANVERSE CONSTRUCTION JOINT
SECTION C-C
LAP DETAIL I

REINFORCEMENT BAR LAP PLAN LONGITUDINAL REINFORCEMENT BARS

<table>
<thead>
<tr>
<th></th>
<th>12'-0"</th>
<th>15'-0"</th>
</tr>
</thead>
<tbody>
<tr>
<td>12'-0" LANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.055</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>0.100</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.155</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>0.200</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>0.255</td>
<td>16</td>
</tr>
</tbody>
</table>

LAP DETAIL II

LAP DETAIL III

GENERAL NOTES:

1. SHEET WAS WORK 3-5-09. TWO DIFFERENT SHEETS WERE PREPARED ONE FOR EACH LANE. USE SHEET 2 FOR LH LANE AND SHEET 1 FOR RH LANE.
2. "L" REINFORCEMENT BARS ARE USED THROUGHOUT THESE TABLES.
3. THE DISTANCE FROM THE EDGE OF THE CROSS-SECTION TO THE CENTER OF THE REINFORCEMENT BARS MAY BE INCREASED BY 1" FOR 30" CIRCLE FUNDING.
4. THE PERCENTAGE OF STEEL REINFORCEMENT IS APPROXIMATELY 1% TO PROJECT PLAN AND CONTRACT DOCUMENTS FOR DETAILS.

DETAIL A

DATE **REVISIONS**
BAR REINFORCEMENT FOR CRC PAVEMENT
STANDARD A12-00

APPROVED: 3/15/2007
NOTES:

1. ALL PAVEMENT JOINTS SHALL BE DETAILED AS SHOWN ON I.O.O.T. HWY. STANDARD 420001, EXCEPT EXPANSION JOINT SEALS SHALL BE AS DESCRIBED IN THE SPECIAL PROVISION, BONDED PREFORMED JOINT SEALER.

3. STUBS SHALL BE THE MINIMUM DIMENSION AS SHOWN AND ALIGNED WITH A MAINLINE TRANSVERSE JOINT.

4. 7' NOSE LOCATION SHALL BE ADJUSTED TO BE ALIGNED WITH A MAINLINE TRANSVERSE JOINT.

5. TYPICAL PCC PAVEMENT JOINT SPACING SHALL BE 15'.

6. AS ADDITIONAL RAMP LANE ARE ADDED, THE MAXIMUM JOINT SPACING SHALL BE 15' LONG BY 15' WIDE, TYPICAL SPACING IS 15' LONG BY 12' WIDE, LONGITUDINAL JOINT LOCATION IN THE WHEEL PATH SHALL BE MINIMIZED.
NOTES:

1. ALL PAVEMENT JOINTS SHALL BE DETAILED AS SHOWN ON I.D.O.T. HAY, STANDARD 42000. EXCEPT EXPANSION JOINT SEALS SHALL BE AS DESCRIBED IN THE SPECIAL PROVISION, BONDED PREFORMED JOINT SEALER.

2. THE THICKNESS OF THE JOINTED RAMP PAVEMENT IN THE TANGENT AREA SHALL MATCH THE MAINLINE PAVEMENT. THE EXTRA THICKNESS OF PAVEMENT SHALL BE INCLUDED IN THE PRICE FOR THE RAMP PAVEMENT.

3. SEE STANDARD A12 (BAR REINFORCEMENT FOR CRC PAVEMENT) FOR DETAILS OF PAVEMENT REINFORCEMENT.

4. TYPICAL PCC PAVEMENT JOINT SPACING SHALL BE 15 FEET.

5. AS ADDITIONAL RAMP LANES ARE ADDED, THE MAXIMUM JOINT SPACING SHALL BE 15' LONG BY 15' WIDE. TYPICAL JOINT SPACING IS 15' LONG BY 12' WIDE. LONGITUDINAL JOINT LOCATIONS IN THE WHEEL PATH SHALL BE MINIMIZED.
NOTES:

1. ALL PAVEMENT JOINTS SHALL BE DETAILED AS SHOWN ON L.D.O.T. H.W.Y. STANDARD 420000, EXCEPT EXPANSION JOINT SEALS SHALL BE AS DESCRIBED IN THE SPECIAL PROVISION, BONDED PREFORMED JOINT SEALER.

2. STUBS SHALL BE THE MINIMUM DIMENSION AS SHOWN AND ALIGNED WITH A MAINLINE TRANSVERSE JOINT.

3. 6-FOOT NOSE LOCATION SHALL BE ADJUSTED TO BE ALIGNED WITH A MAINLINE TRANSVERSE JOINT.

5. TYPICAL PCC PAVEMENT JOINT SPACING SHALL BE 15 FEET.

6. AS ADDITIONAL RAMP LANES ARE ADDED, THE MAXIMUM JOINT SPACING SHALL BE 15' LONG BY 15' WIDE. TYPICAL SPACING IS 15' LONG BY 12' WIDE. LONGITUDINAL JOINT LOCATIONS IN THE WHEEL PATH SHALL BE MINIMIZED.
LONGITUDINAL CONSTRUCTION JOINT WITH NO. 6 TIE BARS AT 24" CENTERS

PAVEMENT THICKNESS AND REINFORCEMENT IN THE RAMP TAPER SHALL BE THE SAME AS THE MAINLINE.

EDGE OF MAINLINE PAVEMENT

4" STUB

(SEE DETAIL C)

4" STUB

20 H1 TAPER RATE

RAMP BASELINE

TRANSVERSE EXPANSION JOINT

NO. 4 TRANSVERSE BARS PERPENDICULAR TO MAINLINE EDGE OF PAVEMENT

NO. 4 TRANSVERSE BARS PERPENDICULAR TO MAINLINE EDGE OF PAVEMENT

RAMP BASELINE (20H1 TAPER RATE)

NOTE:

1. ALL PAVEMENT JOINTS SHALL BE DETAILED AS SHOWN ON I.D.O.T. HWY. STANDARD 420001, EXCEPT EXPANSION JOINT SEALS SHALL BE AS DESCRIBED IN THE SPECIAL PROVISION, BONDED PREFORMED JOINT SEALER.

2. SEE STANDARD A12 (BAR REINFORCEMENT FOR CRC PAVEMENT) FOR DETAILS OF PAVEMENT REINFORCEMENT.

3. THE THICKNESS OF THE JOINTED RAMP PAVEMENT IN THE TANGENT AREA SHALL MATCH THE MAINLINE PAVEMENT. THE EXTRA THICKNESS OF PAVEMENT SHALL BE INCLUDED IN THE PRICE FOR THE RAMP PAVEMENT.

4. TYPICAL PCC PAVEMENT JOINT SPACING SHALL BE 15 FEET.

5. AS ADDITIONAL RAMP LANES ARE ADDED, THE MAXIMUM JOINT SPACING SHALL BE 15' LONG BY 15' WIDE. TYPICAL JOINT SPACING IS 15' LONG BY 15' WIDE. LONGITUDINAL JOINT LOCATIONS IN THE WHEEL PATH SHALL BE MINIMIZED.

ILLINOIS TOLLWAY
Open Roads for a Better Future

JOINTING PLAN
EXIT RAMP TERMINAL
(JOINTED PCC RAMP PAVEMENT ALIGNED TO MAINLINE PAVEMENT)

STANDARD A15-00
NOTES:

1. All pavement joints shall be detailed as shown on I.D.O.T. HwY. Standard 420001, except expansion joint seals shall be as described in the special provision, bonded preformed joint sealer.

2. Stubs shall be the minimum dimension as shown and aligned with a mainline transverse joint.

3. 4-foot nose location shall be adjusted to be aligned with a mainline transverse joint.

4. Typical PCC pavement joint spacing shall be 15 feet.

5. The thickness of the jointed ramp pavement shall match the mainline pavement. The extra thickness of pavement shall be included in the price for the ramp pavement.

6. Ramp narrows from 21' to 18'. Longitudinal joint shall transition from 10' from the ramp baseline to 9' from the ramp baseline.

7. As additional ramp lanes are added, the maximum joint spacing shall be 15' long by 15' wide, typical joint spacing is 15' long by 12' wide. Longitudinal joint locations in the wheel path shall be minimized.
NOTES:
1. ALL PAVEMENT JOINTS SHALL BE DETAILED AS SHOWN ON I.D.O.T., HWY. STANDARD 42000, EXCEPT EXPANSION JOINT SEALS SHALL BE AS DESCRIBED IN THE SPECIAL PROVISION, BONDED PREFORMED JOINT SEALER.
2. TYPICAL PCC PAVEMENT JOINT SPACING SHALL BE 15 FEET.
4. RAMP NARROWS FROM 21' TO 18'. LONGITUDINAL JOINT SHALL TRANSITION FROM 10' FROM THE RAMP BASELINE TO 9' FROM THE RAMP BASELINE.
5. AS ADDITIONAL RAMP LANES ARE ADDED, THE MAXIMUM JOINT SPACING SHALL BE 15' LONG BY 15' WIDE. TYPICAL JOINT SPACING IS 15' LONG BY 12' WIDE. LONGITUDINAL JOINT LOCATIONS IN THE WHEEL PATH SHALL BE MINIMIZED.
NOTES:

1. ALL PAVEMENT JOINTS SHALL BE DETAILED AS SHOWN ON I.D.O.T. HWY. STANDARD 420000, EXCEPT EXPANSION JOINT SEALS SHALL BE AS DESCRIBED IN THE SPECIAL PROVISION, BONDED PREFORMED JOINT SEALER.

2. STUDS SHALL BE THE MINIMUM DIMENSION AS SHOWN AND ALIGNED WITH A MAINLINE TRANSVERSE JOINT.

3. 6" FOOT NOSE LOCATION SHALL BE ADJUSTED TO BE ALIGNED WITH A MAINLINE TRANSVERSE JOINT.

4. TYPICAL PCC PAVEMENT JOINT SPACING SHALL BE 15 FEET.

5. RAMP TAPERS FROM 18° TO 14°, LONGITUDINAL JOINT SHALL BE 9' FROM THE RAMP BASELINE AT THE PCC AND TRANSITION TO BE 7' FROM THE RAMP BASELINE AT THE EXPANSION JOINT.

7. AS ADDITIONAL RAMP LANES ARE ADDED, THE MAXIMUM JOINT SPACING SHALL BE 15' LONG BY 15' WIDE, TYPICAL JOINT SPACING IS 15' LONG BY 12' WIDE. LONGITUDINAL JOINT LOCATIONS IN THE WHEEL PATH SHALL BE MINIMIZED.
LONGITUDINAL KEYED JOINT WITHOUT TIE BARS IS PARALLEL TO RAMP BASELINE.

CORE PAVEMENT TYPE AND THICKNESS TO MATCH MAINLINE.

6' NOMINAL

4' STUB

TRANSVERSE EXPANSION JOINT

6' STUB (SEE DETAIL B)

EDGE OF MAINLINE PAVEMENT

LONGITUDINAL CONSTRUCTION JOINT WITH NO. 6 TIE BARS AT 24" CENTERS.

LONGITUDINAL SAWED JOINT OR LONGITUDINAL CONSTRUCTION JOINT WITH NO. 6 TIE BARS AT 24" CENTERS.

BIT. SHOULDER (TYP.)

NOTES:

1. ALL PAVEMENT JOINTS SHALL BE DETAILED AS SHOWN ON I.D.O.T., HWY. STANDARD 420001, EXCEPT EXPANSION JOINT SEALS SHALL BE AS DESCRIBED IN THE SPECIAL PROVISION, BONDED PREFORMED JOINT SEALER.

2. SEE STANDARD A12 (BAR REINFORCEMENT FOR CRC PAVEMENT) FOR DETAILS OF PAVEMENT REINFORCEMENT.

3. TYPICAL PCC PAVEMENT JOINT SPACING SHALL BE 15 FEET.

4. RAMP TAPERS FROM 18' TO 14'. LONGITUDINAL JOINT SHALL BE 9' FROM THE RAMP BASELINE AT THE PCC AND TRANSITION TO BE 7' FROM THE RAMP BASELINE AT THE EXPANSION JOINT.

5. THE THICKNESS OF THE JOINTED RAMP PAVEMENT SHALL MATCH THE MAINLINE PAVEMENT.

6. AS ADDITIONAL RAMP LANES ARE ADDED, THE MAXIMUM JOINT SPACING SHALL BE 15' LONG BY 15' WIDE. TYPICAL JOINT SPACING IS 15' LONG BY 12' WIDE. LONGITUDINAL JOINT LOCATIONS IN THE WHEEL PATH SHALL BE MINIMIZED.
FABRICATION GENERAL NOTES

4. Any custom slabs 5 ft. 6 in. in length that will be opened to traffic before any hardware and undertab girding or felting occurs shall require two layers of ACI 318 reinforcement as noted on sheet.

5. All fabricated slabs shall be fabricated in accordance with the standard and general notes for installation on contract drawings.

6. All fabricated slabs shall be tested for strength and durability in accordance with the American Concrete Institute (ACI) specifications.

7. Precast working drawings that shall include the following information:
 a) Slab layout drawings for typical standard slabs and for each custom slab to be fabricated, with accurate dimensions.
 b) Reinforcement, spacing, number and details of all required components.
 c) Details of all rebar, stirrups, and other steel used in the fabrication process.
 d) Site plans and location of all precast slabs in accordance with the contract specifications and the general notes for installation.
 e) Locations and spacing of all required components.
 f) Specifications for alignment, fabrication, and installation.
 g) Details of all temporary supports, including the number, type, and location of all supports.

8. Precast working drawings shall include the following information:
 a) Slab layout drawings for typical standard slabs and for each custom slab to be fabricated, with accurate dimensions.
 b) Reinforcement, spacing, number and details of all required components.
 c) Details of all rebar, stirrups, and other steel used in the fabrication process.
 d) Site plans and location of all precast slabs in accordance with the contract specifications and the general notes for installation.
 e) Locations and spacing of all required components.
 f) Specifications for alignment, fabrication, and installation.
 g) Details of all temporary supports, including the number, type, and location of all supports.

9. All fabricated slabs shall be tested for strength and durability in accordance with the American Concrete Institute (ACI) specifications.

10. Precast working drawings that shall include the following information:
 a) Slab layout drawings for typical standard slabs and for each custom slab to be fabricated, with accurate dimensions.
 b) Reinforcement, spacing, number and details of all required components.
 c) Details of all rebar, stirrups, and other steel used in the fabrication process.
 d) Site plans and location of all precast slabs in accordance with the contract specifications and the general notes for installation.
 e) Locations and spacing of all required components.
 f) Specifications for alignment, fabrication, and installation.
 g) Details of all temporary supports, including the number, type, and location of all supports.

11. Precast working drawings shall include the following information:
 a) Slab layout drawings for typical standard slabs and for each custom slab to be fabricated, with accurate dimensions.
 b) Reinforcement, spacing, number and details of all required components.
 c) Details of all rebar, stirrups, and other steel used in the fabrication process.
 d) Site plans and location of all precast slabs in accordance with the contract specifications and the general notes for installation.
 e) Locations and spacing of all required components.
 f) Specifications for alignment, fabrication, and installation.
 g) Details of all temporary supports, including the number, type, and location of all supports.

12. Precast working drawings shall include the following information:
 a) Slab layout drawings for typical standard slabs and for each custom slab to be fabricated, with accurate dimensions.
 b) Reinforcement, spacing, number and details of all required components.
 c) Details of all rebar, stirrups, and other steel used in the fabrication process.
 d) Site plans and location of all precast slabs in accordance with the contract specifications and the general notes for installation.
 e) Locations and spacing of all required components.
 f) Specifications for alignment, fabrication, and installation.
 g) Details of all temporary supports, including the number, type, and location of all supports.

13. Precast working drawings shall include the following information:
 a) Slab layout drawings for typical standard slabs and for each custom slab to be fabricated, with accurate dimensions.
 b) Reinforcement, spacing, number and details of all required components.
 c) Details of all rebar, stirrups, and other steel used in the fabrication process.
 d) Site plans and location of all precast slabs in accordance with the contract specifications and the general notes for installation.
 e) Locations and spacing of all required components.
 f) Specifications for alignment, fabrication, and installation.
 g) Details of all temporary supports, including the number, type, and location of all supports.

14. Precast working drawings shall include the following information:
 a) Slab layout drawings for typical standard slabs and for each custom slab to be fabricated, with accurate dimensions.
 b) Reinforcement, spacing, number and details of all required components.
 c) Details of all rebar, stirrups, and other steel used in the fabrication process.
 d) Site plans and location of all precast slabs in accordance with the contract specifications and the general notes for installation.
 e) Locations and spacing of all required components.
 f) Specifications for alignment, fabrication, and installation.
 g) Details of all temporary supports, including the number, type, and location of all supports.
STANDARD 12'-6" WIDE PANEL LAYOUT FOR ISOLATED PLACEMENT

NOTES:

1. The width and length of produced slabs shall be the indicated dimensions ± 1/8".

2. Slab thickness shall be 1 5/8" ± 1/16".

3. A foam backer rod shall be placed around the outside perimeter of the slab at the bottom of the joint(s) after the slab has been set and before placing base or pavement leveling fill. If applied, the backer rod shall not be required when any slab is levelled with a flammable fill.

4. See Sheet 4 for section details.

5. It shall be the Contractor's option to replace any damaged (manifested or premanifested) slabs as shown on these drawings with fully-reinforced concrete slabs if installed in accordance with Section 6.28 of the Contract. If the Contractor shall lose an approved temporary fill, the temporary fill required for proper slabs may be installed by the Contractor to ensure the proper level of the roadway or shoulder. The Contractor shall be responsible for ensuring that any slabs or Diamond Blinds (where specified) shall be used to maintain the required dimensions parallel to the transverse alignment and line to allow for future backfilling of the specified tolerances.

6. See Note B on Sheet 1 for locating bedding-out points.

STANDARD 12'-6" WIDE PANEL LAYOUT FOR CONSECUTIVE PLACEMENT

* For internal consecutive slabs, performed slots in accordance with Section 6.28 of Sheet 4 may be used in place of consecutive slabs. On 12'-6" wide panels, all performed slots must be filled before being opened to traffic.
STANDARD 13'-6" WIDE PANEL LAYOUT FOR ISOLATED PLACEMENT

NOTES:
1. The width and length of precast slabs shall be the indicated dimensions ± 3/4".
2. Slab thicknesses shall be 10" ± 3/4".
3. A foam backing pad shall be placed around the outside perimeter of the slab at the bottom of the joints after the slab has been set and before grouting or polymer jointing. All slabs must be grouted, the backing pad shall be removed when any slab is levelled with a flexible FEL.
4. See Sheet 4 for section details.
5. It shall be the contractor's option to replace any encoded dowels or preformed slots as shown on these drawings with fully retrofitted Dowel Bars Field Installed in accordance with Exhibit 4 of the Construction Manual when there is a need to provide positive rotational restraint of the concrete. Likewise, in accordance with those drawings, either single or double shear dowels, or dowels placed and grouted shall be used to match the cam cuts perpendicular to the transverse reinforcing joint line to allow for dowel bar placements within the specified tolerances.
6. See Note 1 on Sheet 1 for locating grouting spout ports.

STANDARD 13'-6" WIDE PANEL LAYOUT FOR CONSECUTIVE PLACEMENT

* For internal consecutive slabs, preformed slots in accordance with Section 4.8 of Exhibit 4 of the Construction Manual shall be used. Dowels shall be placed in accordance with these drawings, either single or double shear dowels, or dowels placed and grouted shall be used to match the cam cuts perpendicular to the transverse reinforcing joint line to allow for dowel bar placements within the specified tolerances.
TYPICAL REINFORCEMENT DETAIL

REINFORCEMENT SECTION A-A
TWO MATS OF REINFORCEMENT SHALL BE FOR APPLICATION TO ALL CUSTOM SLABS GREATER THAN 6 FT. LONGITUDINAL LENGTH TO BE OPENED TO TRAFFIC BEFORE SPACING IS COMPLETED
ALL BARS ARE TOWR TO FIT HS BATT

REINFORCEMENT SECTION A-A
ONE MAT OF REINFORCEMENT SHALL BE FOR APPLICATION TO ALL STANDARD SLAB AND FOR ANY CUSTOM SLABS GREATER THAN 6 FT. LONGITUDINAL LENGTH TO BE OPENED TO TRAFFIC ONLY AFTER SPACING IS COMPLETED
ALL BARS ARE TOWR TO FIT HS BATT

NOTE:
FOR ALL CUSTOM SLABS OF TRAFFIC-ENDED SHAPES, REINFORCEMENT SHALL BE LAYED OUT IN A PERPENDICULAR GRID PATTERN, NOT SKewed.

* MIN CLEARANCE FOR TOP REINFORCEMENT SHALL BE ALLOWED FOR PLAIN SLAB TO FIT TRAVEL FRAMES OR INSERTS HARDWARE.

SHEET 5 OF 16

DATE
PRECAST PAVEMENT SLABS
STANDARD AIB 00
NOTES:

1. A FIBER BASKET TED SHALL BE PLACED AROUND THE OUTSIDE PERIMETER OF THE SLAB AT THE BOTTOM OF THE JOINTS AT THE SLAB HAS BEEN NAVIGATED OR TROTTLED. THERM. TELLER SHOULDN'T BE REQUIRED WHEN ANY SLAB IS EXPRESSED WITH A FIBER BRACE.

2. EITHER CRACKS OR CRACKS CRACKS OR CRACKS CRACKS CRACKS SHALL BE PROVIDED TO MAKE THE SLAB 6 IN 1/4 PERPENDICULAR TO THE TRANSVERSE NAVIGATED AND ALLOW FOR CRACKS OR CRACKS OR CRACKS CRACKS CRACKS OR CRACKS.

3. SEE NOTE 1 ON SHEET 1 FOR LOCATING BEARING CIRCLE POINTS.

4. SEE SHEET 6 FOR SECTION DETAILS.
INSTALLATION GENERAL NOTES

27. If the engineer determines that the existing granular backfill is unsuitable for the intended purpose, the contractor shall remove the unsuitable material, in the pavement bedding areas to the depth specified by the engineer and replace it with a material which meets the specifications. The contractor shall notify the engineer prior to the start of this work to ensure compliance with these requirements. The contractor will be responsible for all necessary hauling and labor charges.

28. Leveling material, placed before slab installation shall be either a flocculated full, a flocculated fill, or the equivalent. The requirements of this contract document, FLOCCULATED FILL, or FLOCCULATED FULL, shall be used as leveling material only for final pavement. GRADE CONTROL SHALL BE ENSURED FOR ALL LEVELING MATERIAL. THE TEMPERATURE OF THE FLOCCULATED FILL MATURED AS MANUFACTURED AND DELIVERED, SHALL BE AT LEAST 300 C. THE FLOCCULATED FILL WILL BE ALLOWED IF THE PREDICTED AIR TEMPERATURE WILL BE 300 C OR LESS WITHIN 24 HOURS OF SLAB PLACEMENT. THE FLOCCULATED FULL MUST BE ALLOWED IF THE PREDICTED AIR TEMPERATURE WILL BE 300 C OR LESS WITHIN 24 HOURS OF SLAB PLACEMENT. THE FLOCCULATED FULL MUST BE ALLOWED IF THE PREDICTED AIR TEMPERATURE WILL BE 300 C OR LESS WITHIN 24 HOURS OF SLAB PLACEMENT. THE FLOCCULATED FULL MUST BE ALLOWED IF THE PREDICTED AIR TEMPERATURE WILL BE 300 C OR LESS WITHIN 24 HOURS OF SLAB PLACEMENT.

29. When flocculated fill is used as the leveling material, no slab installation, a perimeter check will not be required around the perimeter of the slab.

30. Leveling material placed immediately after slab installation shall be either a high-density, polymer-modified cement, or the equivalent. The requirements of this contract document, POLYMER-MODIFIED CEMENT, shall be used as leveling material for final pavement. GRADE CONTROL SHALL BE ENSURED FOR ALL LEVELING MATERIAL. THE TEMPERATURE OF THE POLYMER-MODIFIED CEMENT MATURED AS MANUFACTURED AND DELIVERED, SHALL BE AT LEAST 300 C. THE POLYMER-MODIFIED CEMENT WILL BE ALLOWED IF THE PREDICTED AIR TEMPERATURE WILL BE 300 C OR LESS WITHIN 24 HOURS OF SLAB PLACEMENT. THE POLYMER-MODIFIED CEMENT MUST BE ALLOWED IF THE PREDICTED AIR TEMPERATURE WILL BE 300 C OR LESS WITHIN 24 HOURS OF SLAB PLACEMENT.

31. Floating proper removal of existing pavements and acceptable base preparation/excavating the contractor shall have sufficient equipment required for panel installation. Prior to beginning panel installation, lifting and transporting equipment should not damage the prepared base/subbase leveling material. Prior to 24 hour, panels installation, base material, and leveling material should be properly removed.

32. Panels shall be installed at a time and shall be installed in such a manner that the subgrade/levelling material or any remaining pavement is not damaged during installation. Slab placement of the slab, use of spoil to avoid putting or spilling edges of the present slabs, use of spoil as needed to avoid putting the slabs into the correct position. The use of steel, anyamps for chip edges should be avoided.

33. Immediately after the slab has been set and leveled, survey the vertical elevation across all contours to ensure that the vertical difference between adjacent slabs across any contour does not exceed 1/2 inch. If the difference exceeds 1/4 inch, the slab shall be removed and placed at the next higher level. The vertical difference between adjacent slabs shall be controlled by placing a control line at the correct elevation and by adjusting the slab as required. After any required excavation or leveling, the slab shall be placed, placed, placed, placed.

34. No custom slab greater than 6.67 ft. in longitudinal length shall be set and opened to traffic before grouting is complete. Unless the slab was fabricated with a minimum of 24 hours, reinforcement in accordance with the designer, slabs longer than 6.67 flt. shall be placed at a time. The slab shall be grouted and open to traffic when the slab is cured and the composite slab is placed. The slab is placed and open to traffic when the slab is cured and the composite slab is placed. The slab is placed and open to traffic when the slab is cured and the composite slab is placed.

35. Prior to placing the slabs, all pavement, the transverse joint should be flashed with a silicone sealant at the bottom and sides of the slab. The flashing filler should be placed at least 1/2 inch outside either side of the joint, and then spread to ensure a continuous seal around the joint. Flashing filler should be used to prevent any penetrating material from entering the joint.

36. The intersegmental joint should be filled with a noncrushing aggregate, not less than 1/2 inch in size, and not more than 1 inch in size. The aggregate should be well graded and should not contain any organic materials. The aggregate should be well graded and should not contain any organic materials. The aggregate should be well graded and should not contain any organic materials.
PLAN VIEW

SECTION D-G

DETAIL D - DOWEL BAR PLACEMENT

DETAIL FOR STANDARD PRECAST PANELS

IF DR APPLICATION WITH ALL ISOLATED STANDARD SLABS AND WITH INITIAL PLACEMENT OF CONSECUTIVE STANDARD SLABS.

NOTES:
1. PLACE FORM EDGE BOARDS TO THE TOP OF PANEL.
2. UPON COMPLETION, THE FINISHED SURFACE OF THE CONCRETE PANELS, MATERIAL SHALL BE BELOW EXISTING COMPLETE SURFACE.

SECTION L-L

DATE REVISIONS
PRECAST PAVEMENT SLABS
STANDARD A18-00
DETAIL E - DOWEL BAR PLACEMENT DETAIL FOR CONSECUTIVE STANDARD PRECAST PANELS

NOTES:
1. PLACE FOAM CORE BOARDS TO THE TOP OF PATCH.
2. UPON COMPLETION, THE FINISHED SURFACE OF THE CONCRETE BACKFILL MATERIAL SHALL NOT BE BELOW THE EXISTING CONCRETE SURFACE.
DETAIL-F, DOWEL BAR PLACEMENT DETAIL FOR THE LAST TRANSFER

JOINT OF CONSECUTIVELY PLACED STANDARD PRECAST PANELS

NOTES:
1. PLACE FOAM CORE BOARDS TO THE TOP OF Patch
2. UPON COMPLETION, THE FINISHED SURFACE OF THE CONCRETE BEVEL MATERIAL SHALL NOT BE BELOW THE EXISTING CONCRETE SURFACE.
DETAIL G - LONGITUDINAL TIE BAR STITCHING FOR PRECAST PANELS

NOTES FOR TIE BAR STITCHING:

1. DRILL HOLES THAT ARE ORIENTED AT 45° TO THE PAVEMENT SURFACE SO THAT THEY INTERSECT THE TRANSVERSE JOINT OR JOINT AT ABOUT 45° DEGREES. IT IS IMPORTANT TO START DRILLING THE HOLES AT A CONSISTENT DISTANCE FROM THE JOINT, IN ORDER TO CONSISTENTLY DRILL THE HOLES THROUGH THE SLABS.

2. HOLES MUST REMAIN PERPENDICULAR TO THE JOINT PLANE AND BE AT EACH LOCATION BEING DRILLED.

3. SELECT A DRILL THAT MINIMIZES DAMAGE TO THE CONCRETE SURFACE, SUCH AS A HYDRAULIC POWERED DRILL. SELECT A DELAY TIME OF NO MORE THAN 15 SECONDS OR LESSER THAN THE RECOMMENDED REMARK.

4. DRILL HOLES WITH NO LESS THAN A 24 INCH BAR SPACING. ADJACENT HOLES ARE DRILLED IN OPPOSITE DIRECTIONS ACROSS THE JOINT. THE HOLES AND INSERTED TIE BAR SHALL BE NO LESS THAN 24 INCHES FROM ANY EXISTING TRANSVERSE JOINT OR ANY PRECAST OR REPAIR TRANSFER JOINT.

5. HOLE BOTTOMS ARE NO MORE THAN 3 INCH FROM THE SLAB BOTTOM.

6. AIR BLOW THE HOLES TO REMOVE DUST AND DIRT AFTER DRILLING.

7. INJECT ADHESIVE INTO THE HOLE, LEAVING SOME VOLUME FOR THE BAR TO OCCUPY THE HOLE. POURING THE ADHESIVE IS ACCEPTABLE FOR SMALL QUANTITIES.

8. INSERT THE NO. 4 REINFORCED TIE BAR INTO THE HOLE, LEAVING ABOUT 1/16 INCH FROM THE TOP OF BAR TO THE PAVEMENT SURFACE, DEFORMED TIE BARS SHOULD BE COATED.

9. REMOVAL OF EXCESS ADHESIVE AND FINISHES WITH THE PAVEMENT SURFACE.